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Tantrices of Spherical Curves

Bruce Solomon

1. INTRODUCTION

(1.1) If the speed of a smooth closed curve o on the unit sphere S? never
vanishes, than o’s normalized velocity vector 7 := ¢ /|0 | sweeps out a new closed
curve on 82, often called the tangent indicatrix of o. Here we shall simply call 7
the tantrix of o.

Figure 1. A closed curve o on 8 (shorter loop near north pole) and its tantrix.

While every loop o on S? with non-vanishing speed defines a “tantricial” loop
in this way, not every loop is tantricial. Here, we will completely expose the
non-obvious—but lovely—obstruction to this converse.

To begin, note that if the speed of o never vanishes, neither will that of 7. In fact,
the speed of 7, computed relative to arclength along o, gives the curvature of o as
a curve in R% But o, lying on S, can nowhere approximate a straight line to
second order: its curvature—the speed of r—will never vanish. Referring non-ex-
perts to the sidebar discussions of “immersion” and “arclength” for further details,
we conclude more precisely that if o immerses the circle in S?, so will .
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This observation provokes our main question:
When does one immersed circle on S? form the tantrix of another?

Immersion. Roughly speaking, a curve in S? constitutes an immersion if it
has no corners or cusps, though it may cross itself. Analytically, one
guarantees these properties by insisting that the curve’s velocity never-vanishes.
A mapping o: 8! — S? thus forms an immersion of the circle into the sphere
iff for all 6 € R, we have

>0

\ — ()

In this article, we shall deal only W1th twice continuously differentiable
(“smooth”) immersions.

Arclength Parametrization. A basic fact from the differential geometry of
curves states that one can reparametrize any immersion using arclength. This
means we can give the curve unit-speed relative to some new parameter s. In
the context above, for example, we can arrange

d
(e | =
(™)

The tantrix 7 of o will now equal o ’s velocity vector: T = do/ds. As claimed
in our introduction, 7 will then immerse the circle into 8>—dr/ds will never

vanish. In fact, we can easily prove Idr/dsl > 1.
dr
0= (lzrl )-— —

co=14+ — "0,

ds

2 ds?
hence (by Cauchy-Schwartz)

dr dr

dr |
—|=|=l|lolz|=—" 0
ds ds ds
Since |d* /ds2| gives the curvature of a unit-speed curve o, and we have
dr/ds = d%/ds?, this shows too that any curve on S* has curvature at least 1.

() =1,

Joel Weiner recently discovered the answer “by accident” while working on the
seemingly unrelated ' topic of flat tori in 8%

(1.2) Theorem. ([W1) An immersed circle T in S* forms a tantrix if and only if it
has total geodesic curvature zero, and contains no subarc with total geodesic
curvature .

While Weiner derives this simple fact as a corollary to his results on flat tori, he
remarks that “it would be nice to have a curve-theoretic proof” of the result. Here
we provide such a proof, and present some related facts. For one, we have

(1.3) Theorem. An immersed circle in S* and its tantrix share a regular homotopy

class. A tantrix in the equator’s class always bounds oriented area 27w (mod 4m). A
tantrix in the other class bounds area zero.
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As we discuss in a sidebar (§5), regular homotopy means “homotopy through
immersions,” and in S?, immersed circles come in just two regular homotopy
flavors, represented by single and double traversals of the equator respectively.
Notice that these two curves each form their own tantrices, and indeed, bound
areas 27 and 0 (mod4) respectively. (See §5 for the notion of “oriented area
mod 47.”)

The claim about area in this Theorem suggests a connection with the classical
result known as “Jacobi’s Theorem for space curves,” which appears in standard
texts such as Chern [Ch, p. 44], Spivak [Sp, §6.12], and DoCarmo [DoC]. In fact,
Jacobi’s theorem follows immediately from the earlier half of Weiner’s theorem,
which we can state like this:

Proposition 3.1. The tantrix of an immersed circle in S* always has total geodesic
curvature zero, and if non-self-intersecting, bounds area 21r.

We postpone the elementary proof of this fact to §3, but we show right now how
to deduce Jacobi’s Theorem from it:

(1.4) Corollary. (“Jacobi’s Theorem™) The principal normal indicatrix of a closed
space curve with non-vanishing curvature, if embedded, bisects the area of S°.

(1.5) Proof. The unit tangent vector T along a closed space curve y maps S! into
S?, and here, immerses S!, since the curvature k of y never vanishes. Indeed,
when s represents arclength along vy, the Frenet formula dT/ds = kN, shows that
the tantrix of T coincides with the normal indicatrix N of y. If N never crosses
itself, it bounds a domain Q C 82, with area 0 < |Q| < 4. Proposition 3.1 then
forces |Q| = 27 = 3|S?|. Q.E.D.

Note that Jacobi’s Theorem does not, conversely, imply Proposition 3.1. For, the
typical closed curve on S? does not form the tangent indicatrix of a closed space
curve; the latter always have length at least 2, (see [Ch, §4], for instance), and
can never lie in an open hemisphere (exercise). We therefore submit that Proposition
3.1—not Jacobi’s theorem—would better serve texts like [Chl, [Spl, and [DoC]. With
the aim of emphasizing this possibility, we prove the “if and only if” statement of
Theorem 1.2 as separate subsidiary results—Propositions 3.1 and 4.1—and prove
them by completely elementary techniques.

To deal with the subtler notions of oriented area and regular homotopy invoked
by Theorem 1.3, we must resort to more sophisticated means in §5. We have tried
to write §5 so that novice readers can follow its main points, if not its details,
however, so the earlier'sections borrow nothing from this final one.

Incidentally, Theorem 1.3 implies an amusing corollary:

(1.6) Corollary. Any immersed circle regularly homotopic to a figure-eight in S* must
cross some great circle orthogonally—and in the same direction—at least twice.

Proof: One can regularly homotope any figure-eight in S? to a double-equator,
and the tantrix of such a curve must then self-intersect, since the Proposition now
excludes it from the regular homotopy class of the single-equator. A self-crossing
of the tantrix, however, signals two or more points on the original closed curve
with the same oriented tangent vector. The corollary follows directly, because the
set of points on S? that share a particular tangent direction form the great circle
perpendicular to that direction. Q.E.D.
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2. CURVES ON S% AND A KEY LEMMA. Here we prepare for later arguments
with some elementary calculations for curves on S?, and prove an easy—but very
illuminating—Ilemma.

(2.1) Consider an arbitrary immersed curve on S2, and call it 7, since we will soon
want to ask whether it arises as the tantrix of some other spherical curve o. Refer
7 to an arclength parameter ¢ (we will save “s” for arclength along o), so that
7= dr/dt has length 1. Define also the unit normal vtorinS?viavi=7X 7T,
so that {r, 7, v} forms an oriented orthonormal basis for R?, with 7 and v spanning
the tangent plane to S? at 7(¢) for each ¢. By definition, when one expands the
second derivative 7 in terms of this frame, the coefficient of v gives the geodesic

curvature k, of 7. To get the two remaining coefficients, we simply compute

Geodesic Curvature. As mentioned above, the acceleration vector of a
unit-speed space curve gives (via its length) the curvature k of that curve.
One can parametrize any immersed curve by arclength, making this
definition quite general. (Exercise: For a radius-r circle in the plane,
k=1/r)
For ur(it-speed curves on surfaces, we get the geodesic curvature—«,—by
measuring the length of the surface-tangential component of the acceleration.
(Exercise: For a radius—r circle on 8%, k, = V1 —r? /r.) As shown in §3,
geodesic curvature relates very closely to parallelism. Indeed, by Equation
3.2.1, k, gives the rate at which a parallel vectorfield rotates relative to the
tangen vectorfield of a unit-speed curve. (Exercise: How much will a Foucault
pendulum at latitude ¢ precess in 24 hours?)

Geodesics—curves with k, = 0—play a major role in Differential Geome-
try because they provide the shortest paths connecting pairs of points on
surfaces (and on higher dimensional “surfaces”).

and

| 8
N

(Irl ) —lil* =

(NSRS

We thus have

T=Kv—T. (2.1.1)

Among other things, this fact implies the spherical “Frenet” formula
. d . . . ..
V= E('TX T)=TXT+TXT=7X(KV—T)=KTXV

= — ki (2.1.2)

Next, consider a unit vector field o tangent to S? along 7. Characterize the angle
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¢ between o and — 7 at each time ¢ by the equation

a(t) = —cos ¢(t) - 7(t) + sin ¢(t) - v(t). (2.1.3)
Differentiate this equation, and expand in terms of 7, v, and 7, using Equations
2.1.1 and 2.1.2:

6 = ¢ sin ¢ — cos pF + ¢ cos pv + sin v
= sin ¢(¢> — Kg)+ + cos d)(d) - Kg)V + cos ¢t
= (& — ,)(sin ¢7 + cos ¢v) + cos p7 (2.1.4)

We will soon apply these facts, but first we record a lemma. Though very simple,
this lemma has a surprise bottom line invoking the key notion of parallelism for
vectorfields tangent to S along a curve (see sidebar).

Parallel Vectorfields along Curves on S2. In the plane, we call a vectorfield v
parallel along a path v if it has constant length and direction:

d
vparallel < Et-v(y(t)) = 0 (plane)

Along a curve in S%, however, one can’t generally find a vectorfield tangent to
the sphere with this property. So we can’t define parallelism by the complete
vanishing of a spherical vectorfield’s derivative. One can, however, ask the
derivative to vanish tangentially, thus defining v as parallel along vy in S? if its
derivative always points normally to S? along y. Since each point in S? equals
the normal to S? at that point, we then have

d
v parallel & Ev(y(t)) = f(¢t)y(¢) (sphere).

for some scalar function f.

This notion of parallism has many applications in Geometry, and even in
Physics. For-example, as it repeatedly sweeps through its lowest point, the
velocity vector of a Foucault Pendulum traces out a parallel vectorfield along
a circle of latitude on the rotating Earth—showing physically that the
parallel extension of an initial starting vector along a loop in 82 (e.g., a circle
of latitude in the “Foucault” case) won’t generally end up where it started
after traversing the loop!

(2.2) Lemma. If s and t denote oriented arclength parameters along a curve o
immersed in 82, and along its tantrix T respectively, then

do  d: ds
G=—=1— and — >0.

at dt dt

One can therefore regard any immersed curve o in S* as a parallel vectorfield tangent
to S8? along its own tantrix.

Proof: Write ¢ as a function of s by basing an arclength integral at some value s,
of s:

ds.

s| dr
t =
(8) f% —
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We thus have ¢'(s) = |dr/ds|—the speed of — which must exceed 1, as discussed
in our paper’s second paragraph (see also Equation (*) of the sidebar item on
Arclength). In particular, t'(s) > 0. Furthermore, dr/ds = d’%s/ds?, so our stand-
ing smoothness assumption on o ensures continuity of ¢’. The Inverse Function
Theorem now makes s a function of ¢, with

dar t'(s) >0
and

. dods ds

g = Es_:i? ='TE.

Having derived the asserted formulas, we now simply observe that 7(s) coincides
with the normal to S$? at 7(s), and o(s)- 7(s) = d/ds(%la-lz) = (0, so o(s) lies
tangent to S? at 7(s) for each s. Moreover, our expression for ¢ leaves it with no
component tangent to S2. This makes o parallel along 7. Q.E.D.

3. AN ELEMENTARY ANTECEDENT TO JACOBI’'S THEOREM. Before in-
dulging in a more complete analysis of tantrices, we supply the easy Proposition
that implies Jacobi’s Theorem via the argument given in §1.5. Recall that the
integral of k, over an entire curve defines that curve’s total geodesic curvature.
(3.1) Proposition. The tantrix of an immersed circle in S? always has total geodesic
curvature zero, and if embedded, bounds area 2.

(3.2) Proof. Let 7 denote the tantrix of an immersed circle o € S%. By Lemma 2.2,
we may regard o as a vectorfield tangent to S* along 7, so Equation 2.1.4 applies.
Comparing the expression given there for ¢ with the one given by Lemma 2.2, we
immediately deduce

b= K,. (3.2.1)

Moreover, o closes up, making ¢ L-periodic, L denoting the length of the tantrix.
Hence

L .
0=¢(L) — ¢(0) = dt = | k,.
(L) = $(0) = ["pdi = [,
This proves the Proposition’s first claim, and Gauss-Bonnet does the rest:

0= f1a4 = [Kda=2m~ [k =2m. QED.

4. INVERTING A TANTRIX. Implicitly, Lemma 2.2 suggests an elegant way to
“invert” a tantrix—i.e., to find an immersed circle o C S? having a given curve 7
as tantrix. Namely, one should simply parallel-translate a unit vector tangent to S*
around 7. But even when the total geodesic curvature of 7 vanishes—an obvious
necessity by Proposition 3.1—this procedure can fail: it may not produce an
immersion. For instance, along the equator, the parallel “vertical” vectorfield
(0,0, 1) traces out only one point—hardly an immersed circle. On the other hand,
parallel-translating any non-vertical unit tangent around the equator yields a circle
of latitude, whose tantrix does give back the equator. Proposition 4.1 below will
resolve this paradox using the oscillation of a total curvature function.
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To define that function, observe that the vanishing of total geodesic curvature
on an immersed circle 7 C 82
f Kk, = 0,
r

ensures that k, has a continuous antiderivative—call it ¢,—on 7. Geometrically,
¢, measures the angle between — 7 and some parallel unit vectorfield along 7; this
follows from Equations 2.1.3 and 2.1.4. Of course, = boasts an entire circle of such
vectorfields; we have specified ¢, only up to addition of a constant. But no such
ambiguity afflicts the oscillation of ¢,, defined via

osc ¢, == sup ¢, — inf ¢,.

Moreover, Equation 3.2.1 says ¢, = Ky. SO 0sc ¢, measure the maximum total
geodesic curvature of any subarc of .

(4.1) Proposition. On the tantrix T of an immersed circle o in S%, we always have
oscp, < m; i.e., no subarc of T has total geodesic curvature w. Conversely, any
immersed circle T in S* having total geodesic curvature zero and osc ¢, < 1, forms the
tantrix of some other immersed circle o in S2.

Proof: Recall that by Lemma 2.2, o lies tangent to S? along 7, with

) ds d ds 0
=r— — > 0.
[0} T at an dt
These two facts produce immediate consequences via Equation 2.1.4. Namely, on
denoting by ¢ the angle between o and — 7 (as characterized by Equation 2.1.3),

2.1.4 implies
. ds
¢ =k, and cos¢=z>0.

The first identity here shows that ¢ antidifferentiates K,; We can take ¢, = ¢. The
second then forces —w/2 < ¢, < m/2, which clearly means osc ¢, < 7, and
proves the Proposition’s first statement.

To get the converse, consider an immersed circle 7 in 82 with total geodesic
curvature zero—so that «, has a continuous antiderivative—and assume osc ¢, <
m. This latter restriction clearly lets us choose an antiderivative ¢, for Kk, with
—-m/2< ¢, < w/2.

Having done so, let ¢ denote arclength along 7, and construct the unit normal
v =7 X 7 along 7 as in §2 above. If we now define a tangent vectorfield o along 7
using Equation 2.1.3 with ¢ replaced by ¢,, so that

o(t) = —cos ¢ (t)7(t) + sin ¢ (1) v(2),
then Equation 2.1.4 immediately forces ¢ = cos ¢, 7, because ¢, — k, = 0. Since
cos ¢, never vanishes, this makes ¢ an immersion, with tantrix . Q.E.D.

5. AREAS AND REGULAR HOMOTOPY. We now turn to Theorem 1.3, restated
here for the reader’s convenience:

Theorem 1.3. An immersed circle in S* and its tantrix share a regular homotopy class.

A tantrix in the equator’s class always bounds area 2m. A tantrix in the other class
bounds area zero.
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Regular Homotopy of Curves. Homotopy means “continuous deformation.’
For instance, if we deform a round circle in the plane into a long, narrow
ellipse by stretching along an axis, we create a homotopy joining these two
closed curves. A homotopy qualifies as regular when the curve begins and
remains immersed throughout the deformation.

Two curves belong to the same regular homotopy class if some regular
homotopy joins them—TIlike the circle and ellipse mentioned above. Every
immersed circle in the plane homotopes regularly to an n-times traversed
circle for some unique integer n (add +1 for each counterclockwise
traversal, —1 for clockwise traversals), or to a figure-eight (n = 0). In
particular, such curves form infinitely many different classes. For instance, a
simple clockwise circle won’t deform into a counterclockwise one without
passing through a “cusp” at some intermediate step:

Figure 2. A typical—hence non-regular—homotopy from a +1 circle to a —1 circle. Like this
one, any homotopy between counterclockwise and clockwise circles must pass through a cusp at
some stage.

On the sphere, however, the situation differs dramatically. For instance, one
can homotopically reverse the orientation of a longitudinal circle by simply
rotating it 180°, keeping its north and south poles fixed. Moreover, by
generalizing this “trick,” one can show that on S, immersed circles form only
two regular homotopy classes. The equator, traced once (or any odd number
of times) represents one class. Traced twice (or any even number of times), it
represents the other class. (Exercise: Convince yourself that on S2, figure-
eights belong to the latter class.) For further elaboration of this fascinating
topic, see [P].

(5.1) Areas. Since the tantrix of an immersed circle can cross itself, thereby cutting
the sphere into many sub-domains, the area it bounds requires careful definition.
One can make a good definition, however, because a closed, immersed curve in S?
always bounds a 2-dimensional homology class, and one may assign areas to such
classes very naturally.

To see how, let C denote any union of oriented, immersed circles in S2.
Suppose we have a smooth surface S with boundary, and a smooth mapping p:
S — 8% such that p(dS) = C. Given C, standard differential topology guarantees
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the existence of an § and a p with these attributes: in fact, one can extend any
immersion with image C smoothly (through not generally as an immersion) to any
smooth surface that spans its domain. Now let @ denote the standard area 2-form
on S2. The prescription

area(C) = _/;p*w (mod4m) (5.1.1)

makes good sense; it depends on neither S, nor p, since it returns 47 deg( p) when
d(S) = 0 (e.g., by the “degree formula” in [G & P]). Equation 5.1.1 clearly corrobo-
rates all familiar definitions of area for closed curves which don’t self-intersect in
S2—ijust choose the subdomain of S? bounded by C for S. So we define the area
bounded by general closed immersed curves using this prescription.

(5.2) The Unit Tangent Bundle of S*. A spanning surface S arises naturally in our
proof of Theorem 1.3; it will lie in the 3-dimensional space of all unit vectors
tangent to S>—the sphere’s unit tangent bundle US*. We may specify such vectors
using their base-points in S? and their unit direction vectors—also points in S2. So
we shall regard US? as the following subset of 82 X 8% (in R®* X R3):

US? == {(u,v) € $2 X S%:u-v =0}.

At each base point u € S?, we find a circle of unit tangent vectors v,. This makes
US? a bundle of circles over the 2-sphere. Let p denote the bundle projection that
sends each circular fiber to its base-point:

p:US? - 8%, p(v,) =u.
The formula
(u,v) = (u,cos v + sin O(u X v))

rotates all fibers through angle 6 (counterclockwise, as viewed from outside the
sphere), so by applying d/d6|e-o, we harvest a smooth unit vectorfield on US?
which flows tangent to the fibers; namely, (0, u X v) at the point (u, v).

Call the one-form dual to this vectorfield «, so that a(x) = (0,u X v) - x for
any x tangent to US? at (u,v)." The exterior derivative da, it turns out, gives the
curvature 2-form on US?. So since S? has constant curvature 1, da simply pulls
back 1 times the area form on S?, via the projection p:

da = p*w. (5.2.1)
Readers unfamiliar with this equation may compute da directly using the fact that
da(X,Y) = (Vxa)(Y) — (Vya)(X) =Dy(0,u Xv) Y —Dy(0,u Xv) X

whenever X and Y are tangent to US?.
Our main argument now comes easily:

(5.3) Proof of Theorem 1.3. The tantrix of an immersed circle again immerses the
circle, as we have noted several times. Note also that multiples of the equator
reparametrize their own tantrices. So if we deform a curve o in S? through
immersions to some multiple of the equator, its tantrix flows simultaneously to that

1The knowledgeable reader may recognize a as the standard connection form on US?. In particular,
if one lifts a smooth unit-speed curve 7(¢) on 82 to the curve y = (r, %) in US?, then a(5(¢)) returns
the geodesic curvature of 7 at time ¢. We shall evaluate « along a different lift to prove Theorem 1.3,
however.
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same multiple equator—and likewise through immersions. In particular, any
immersed circle shares a regular homotopy class with its tantrix, as the Theorem’s
first statement claims.

To get the statements about area, let T denote the tantrix of an immersed circle
o in S?, and refer both to an arclength parameter ¢ along 7. Lift 7 to the curve
A, = (r,0) in US% The collinearity of ¢ :=do/dt with 7 (Lemma 2.2) then
makes A, everywhere horizontal—orthogonal to the fibers—in US?, as an easy
calculation shows:

a(A,)=(0,7x0a) (7,6)=(rX0a) 6=0. (5.3.1)

Now consider some multiple of the equator—call it e: S' — S*—and suppose we
can deform o to e through immersions. By lifting the tantrix of each curve in the
resulting regular homotopy to US? as just described, we smoothly map an annulus
S into US?, with d(p(S)) = p(A, — A,) = 7 — e. We can therefore calculate the
area that 7 — e bounds in S? by applying Stokes’ Theorem in conjunction with our
area prescription (5.1.1), the formula for da (5.2.1), and the horizontality of lifted
tantrices (5.3.1):

area(r—e)=[gp*w=/;da=Lsa=j;_AO=0.

It follows immediately that 7 and e bound the same area in S Since the
Theorem’s claims about area clearly hold for multiples of the equator, hence for e,
we now get the same for the arbitrary tantrix 7. Q.ED.
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